RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp calaminaria
Lodewyckx, C., Mergeay, M., Vangronsveld, J., Clijsters, H., & van der Lelie, D. (2002). Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp calaminaria. International Journal of Phytoremediation, 4(2), 101-115.
We investigated bacterial populations associated with the Zn hyperaccumulator Thlaspi caerulescens subsp. calaminaria grown in a soil collected from an abandoned Zn-Pb mine and smelter in Plombieres, Belgium. The bacterial population of the nonrhizospheric soil consisted of typical soil bacteria, some exhibiting multiple heavy-metal resistance characteristics that often are associated with polluted substrates: 7.8% and 4% of the population survived in the presence of elevated levels of Zn (1 mM) and Cd (0.8 mM), respectively. For the bacterial population isolated from the rhizosphere, the comparable survival rates were 88 and 78%. This observation indicates a selective enrichment of the metal-resistant strains due to an increased availability of the metals in soils near the roots compared with nonthizospheric soil. The endophytic inhabitants of the roots and shoots were isolated, identified, and characterized. Although similar endophytic species were isolated from both compartments, those from the rhizoplane and roots showed lower resistance to Zn and Cd than the endophytic bacteria isolated from the shoots. In addition, root endophytic bacteria had additional requirements. Contrary to the rootresiding inhabitants, the shoot represented a niche rich in metal-resistant bacteria and even seemed to contain species that were exclusively abundant there. These differences in the characteristics of the bacterial microflora associated with T. caerulescens might possibly reflect altered metal speciation in the different soils and plant compartments studied