RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Insulin-like growth factor I receptor mRNA and protein expression in pig corpora lutea
Ge, Z., Nicholson, W. E., Plotner, D., Farin, C. E., & Gadsby, J. E. (2000). Insulin-like growth factor I receptor mRNA and protein expression in pig corpora lutea. Journal of Reproduction and Fertility, 120(1), 109-114. http://rep.bioscientifica.com/view/journals/rep/120/1/109.xml
Insulin-like growth factor I (IGF-I) is believed to play a luteotrophic role in the pig corpus luteum during the oestrous cycle. Since the actions of IGF-I in target tissues are mediated by the type I IGF receptor, the concentrations of IGF-I receptor mRNA and protein were examined in pig corpora lutea at different stages of the oestrous cycle. Corpora lutea were collected from normally cyclic gilts on days 4, 7, 10, 13, 15 and 16 of the oestrous cycle (n = 4 animals per day). Corpora lutea on days 7, 10 and 13 were dissociated with collagenase, and large and small luteal cell sub-populations were separated by elutriation. Northern and slot blots were used to examine mRNA, and western blots were used to measure the concentrations of IGF-I receptor protein in the pig corpus luteum. On northern blots, luteal IGF-I receptor mRNA was present as a single 11 kb transcript. The slot blots showed that the steady state expression of IGF-I receptor mRNA increased significantly (P < 0.05) from its lowest value on day 4, to reach a maximum on days 13-16. IGF-I receptor mRNA was also expressed to a greater extent in large compared with small luteal cells (P < 0.05). On western blots, IGF-I receptor appeared as a 95 kDa protein band (beta-subunit) and IGF-I receptor protein concentrations were significantly higher (P < 0.05) on days 4-10 than on days 13-16. Finally, large luteal cells appeared to contain more IGF-I receptor protein than the small luteal cells. In conclusion, since IGF-I receptor was detected in the pig corpus luteum, it is a likely target tissue for IGF-I, especially during the early luteal phase. Furthermore, IGF-I receptor was localized primarily on large luteal cells, thus it is hypothesized that IGF-I may play a paracrine role in the pig corpus luteum.