RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Infrared spectroscopic studies on the phosphatidylserine bilayer interacting with calcium ion
Effect of cholesterol
Choi, S., Ware, W., Lauterbach, S. R., & Phillips, W. M. (1991). Infrared spectroscopic studies on the phosphatidylserine bilayer interacting with calcium ion: Effect of cholesterol. Biochemistry, 30(35), 8563-8568. https://doi.org/10.1021/bi00099a011
Fourier transform infrared (IR) spectroscopic studies of phosphatidylserine/cholesterol/Ca2+ complexes are reported using the synthetic phosphatidylserines (PS) 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS), and 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS). IR spectra reveal that cholesterol does not significantly alter the binding nature of Ca2+ to PS molecules; Ca2+ binds to the phosphate ester group of PS in the presence of cholesterol up to 50 mol% as in the case of pure PS bilayers. However, the IR data indicate that the presence of cholesterol induces disorder of the acyl chain packing, increases the degree of immobilization of the interfacial and polar regions, and increases the degree of dehydration of the PS/Ca2+ complexes.