RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Influence of tertiary alkanolamines on portland cement hydration
Gartner, E., & Myers, D. (1993). Influence of tertiary alkanolamines on portland cement hydration. Journal of the American Ceramic Society, 76(6), 1521-1530. https://doi.org/10.1111/j.1151-2916.1993.tb03934.x
The physical and chemical effects of small additions of two different tertiary alkanolamines to portland cement were investigated. The strengths of standard test mortars moist cured for more than 1 day were found to be enhanced in some cases by addition of triisopropanolamine, but not by similar amounts of triethanolamine. Thermogravimetric and X-ray diffractometric data indicate that the increased mortar strengths resulted from an increased degree of hydration of the cement. Calorimetry and aqueous-phase analysis show that the higher alkanolamine, triisopropauo-lamine, remains in solution for a sufficient time to catalyze hydration of C4 AF after all of the free gypsum has been consumed to form calcium sulfoaluminate hydrates, In contrast, the lower alkanolamine, triethanolamine, is mostly adsorbed by the cement within the first hours of hydration. It is hypothesized that the catalytic mechanism involves facilitated transport of ferric ions through the aqueous phase in the form of ferric-alkanolamine complexes.