RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Increased expression of vascular permeability factor (vascular endothelial growth factor) in bullous pemphigoid, dermatitis herpetiformis, and erythema multiforme
Brown, L. F., Harrist, T. J., Yeo, K. T., Ståhle-Bäckdahl, M., Jackman, R. W., Berse, B., Tognazzi, K., Dvorak, H. F., & Detmar, M. (1995). Increased expression of vascular permeability factor (vascular endothelial growth factor) in bullous pemphigoid, dermatitis herpetiformis, and erythema multiforme. Journal of Investigative Dermatology, 104(5), 744-749. https://doi.org/10.1111/1523-1747.ep12606974
Vascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), plays an important role in the increased vascular permeability and angiogenesis associated with many malignant tumors. In addition, VPF/VEGF is strongly expressed by epidermal keratinocytes in wound healing and psoriasis, disorders that are also characterized by increased microvascular permeability and angiogenesis. In this study, we investigated the expression of VPF/VEGF in three bullous diseases with subepidermal blister formation that are characterized by hyperpermeable dermal microvessels and pronounced papillary dermal edema. The expression of VPF/VEGF mRNA was strongly up-regulated in the lesional epidermis of bullous pemphigoid (n = 3), erythema multiforme (n = 3), and dermatitis herpetiformis (n = 4) as detected by in situ hybridization. Epidermal labeling was particularly intense over blisters, but strong expression was also noted in areas of the epidermis adjacent to dermal inflammatory infiltrates at a distance from blisters. Moreover, the VPF/VEGF receptors, flt-1 and KDR, were up-regulated in endothelial cells in superficial dermal microvessels. High levels of VPF/VEGF (138-238 pM) were detected in blister fluids obtained from five patients with bullous pemphigoid. Addition of blister fluid to human dermal microvascular endothelial cells exerted a dose-dependent mitogenic effect that was suppressed after depletion of VPF/VEGF by immunoadsorption. These findings strongly suggest that VPF/VEGF plays an important role in the induction of increased microvascular permeability in bullous diseases, leading to papillary edema and fibrin deposition and contributing to the bulla formation characteristic of these disorders.