RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
With the continued growth of photonics, silicon oxynitride (SiOxNy) is becoming a popular material for optoelectronic applications owing to its large tunable refractive index. However, with the increase in refractive index, these films tend to show poor optical transmission characteristics. In this research we have investigated the influence of growth conditions on the loss characteristics of PECVD SiOxNy films. The films are grown at 350 °C substrate temperature and 1 Torr pressure with silane (SiH4) and nitrous oxide (N2O) precursor gases. The precursor flow rate and power input to the system are varied as the two primary parameters. It is observed that films grown at 100 kHz plasma frequency proved to be more transmissive than films grown at 13.56 MHz plasma frequency. Elastic recoil detection analysis results showed the hydrogen content is less in the low frequency films than the high frequency films, which is believed to be the reason for the low loss behavior. The details of these analysis results are discussed below.