RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Identifying structural features on 1,1-diphenyl-hexahydro-oxazolo[3,4-a]pyrazin-3-ones critical for Neuropeptide S antagonist activity
Zhang, Y., Gilmour, B., Navarro, H., & Runyon, S. (2008). Identifying structural features on 1,1-diphenyl-hexahydro-oxazolo[3,4-a]pyrazin-3-ones critical for Neuropeptide S antagonist activity. Bioorganic and Medicinal Chemistry Letters, 18(14), 4064-4067. https://doi.org/10.1016/j.bmcl.2008.05.098
A series of 7-substituted 1,1-diphenyl-hexahydro-oxazolo[3,4-a]pyrazin-3-ones were synthesized and tested for Neuropeptide S (NPS) antagonist activity. A concise synthetic route was developed, which features a DMAP catalyzed carbamate formation. 4-Fluorobenzyl urea (1c) and benzyl urea (1d) were identified as the most potent antagonists among the compounds examined. Structure-activity relationships (SARs) demonstrate that a 7-position urea functionality is required for potent antagonist activity and alkylation of the urea nitrogen (1e) or replacement with carbon or oxygen (5a) results in reduced potency. In addition, compounds with alpha-methyl substitution (1b) or elongated alkyl chains (1h and 1j) had reduced potency, indicating a limited tolerance for 7-position substituents