RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Identification of New Modulators and Inhibitors of Palmitoyl-Protein Thioesterase 1 for CLN1 Batten Disease and Cancer
Puhl, AC., Raman, R., Havener, TM., Minerali, E., Hickey, AJ., & Ekins, S. (2024). Identification of New Modulators and Inhibitors of Palmitoyl-Protein Thioesterase 1 for CLN1 Batten Disease and Cancer. ACS Omega, 9(10), 11870-11882. https://doi.org/10.1021/acsomega.3c09607
Palmitoyl-protein thioesterase 1 (PPT1) is an understudied enzyme that is gaining attention due to its role in the depalmitoylation of several proteins involved in neurodegenerative diseases and cancer. PPT1 is overexpressed in several cancers, specifically cholangiocarcinoma and esophageal cancers. Inhibitors of PPT1 lead to cell death and have been shown to enhance the killing of tumor cells alongside known chemotherapeutics. PPT1 is hence a viable target for anticancer drug development. Furthermore, mutations in PPT1 cause a lysosomal storage disorder called infantile neuronal ceroid lipofuscinosis (CLN1 disease). Molecules that can inhibit, stabilize, or modulate the activity of this target are needed to address these diseases. We used PPT1 enzymatic assays to identify molecules that were subsequently tested by using differential scanning fluorimetry and microscale thermophoresis. Selected compounds were also tested in neuroblastoma cell lines. The resulting PPT1 screening data was used for building machine learning models to help select additional compounds for testing. We discovered two of the most potent PPT1 inhibitors reported to date, orlistat (IC50 178.8 nM) and palmostatin B (IC50 11.8 nM). When tested in HepG2 cells, it was found that these molecules had decreased activity, indicating that they were likely not penetrating the cells. The combination of in vitro enzymatic and biophysical assays enabled the identification of several molecules that can bind or inhibit PPT1 and may aid in the discovery of modulators or chaperones. The molecules identified could be used as a starting point for further optimization as treatments for other potential therapeutic applications outside CLN1 disease, such as cancer and neurological diseases.