RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Levy, K. A., Brodnik, Z. D., Shaw, J. K., Perrey, D. A., Zhang, Y., & España, R. A. (2017). Hypocretin receptor 1 blockade produces bimodal modulation of cocaine-associated mesolimbic dopamine signaling. Psychopharmacology, 234(18), 2761-2776. https://doi.org/10.1007/s00213-017-4673-y
Cocaine addiction is a chronic psychiatric disorder characterized by pathological motivation to obtain cocaine and behavioral and neurochemical hypersensitivity to cocaine-associated cues. These features of cocaine addiction are thought to be driven by aberrant phasic dopamine signaling. We previously demonstrated that blockade of the hypocretin receptor 1 (HCRTr1) attenuates cocaine self-administration and reduces cocaine-induced enhancement of dopamine signaling. Despite this evidence, the effects of HCRTr1 blockade on endogenous phasic dopamine release are unknown.In the current studies, we assessed whether blockade of HCRTr1 alters spontaneous and cue-evoked dopamine release in the nucleus accumbens core of freely moving rats.We first validated the behavioral and neurochemical effects of the novel, highly selective, HCRTr1 antagonist RTIOX-276 using cocaine self-administration and fast-scan cyclic voltammetry (FSCV) in anesthetized rats. We then used FSCV in freely moving rats to examine whether RTIOX-276 impacts spontaneous and cue-evoked dopamine release. Finally, we used ex vivo slice FSCV to determine whether the effects of RTIOX-276 on dopamine signaling involve dopamine terminal adaptations.Doses of RTIOX-276 that attenuate the motivation for cocaine reduce spontaneous dopamine transient amplitude and cue-evoked dopamine release. Further, these doses attenuated cocaine-induced dopamine uptake inhibition at the level of dopamine terminals.Our results provide support for the standing hypothesis that HCRTr1 blockade suppresses endogenous phasic dopamine signals, likely via actions at dopamine cell bodies. These results also elucidate a second process through which HCRTr1 blockade attenuates the effects of cocaine by reducing cocaine sensitivity at dopamine terminals.