RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
This letter reports on nucleation and growth of graphene foliates protruding from the sidewalls of aligned carbon nanotubes (CNTs) and their impact on the electrochemical double-layer capacitance. Arrays of CNTs were grown for different time intervals, resulting in an increasing density of graphene foliates with deposition time. The samples were characterized using electrochemical impedance spectroscopy, scanning electron microscopy, and transmission electron microscopy. Both low and high frequency capacitance increased with increasing foliate density. A microstructural classification is proposed to explain the role of graphene edges, three-dimensional organization, and other features of hybrid carbon systems on their electrochemical properties. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657514]