RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Forward-mutation tests on the antitumor agent ICR-170 in Neurospora crassa demonstrate that it induces gene/point mutations in the ad-3 region and an exceptionally high frequency of multiple-locus ad-3 mutations with closely linked sites of recessive lethal damage
De Serres, F., & Malling, H. V. (1994). Forward-mutation tests on the antitumor agent ICR-170 in Neurospora crassa demonstrate that it induces gene/point mutations in the ad-3 region and an exceptionally high frequency of multiple-locus ad-3 mutations with closely linked sites of recessive lethal damage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 310(1), 15-36. https://doi.org/10.1016/0027-5107(94)90005-1
The mutagenicity of the antitumor agent ICR-170 (2-methoxy-6-chloro-9-[(ethyl-2-chloroethyl)amino propylamino] acridine dihydrochloride) in the adenine-3 (ad-3) region was studied with a two-component heterokaryon (H-12) of Neurospora crassa. The objective was to characterize the genetic damage produced by this acridine nitrogen mustard derivative to determine in a lower eukaryotic organism the basis for its potent activity against ascites tumors in mice. As in higher eukaryotes, specific-locus mutations in the ad-3 region of strain H-12 result from gene/point mutations, multiple-locus mutations, and multilocus deletion mutations at the closely linked ad-3A and ad-3B loci. Six different treatments of conidial suspensions of H-12 with ICR-170 were used to obtain dose-response curves for inactivation of conidia as well as the overall induction of ad-3 forward mutations using a direct method based on pigment accumulation rather than a requirement for adenine. These experiments demonstrated that: (1) the slope of the dose-response curve for ICR-170-induced specific-locus mutations in the ad-3 region was 1.97 +/- 0.02, and (2) ICR-170 is a potent mutagen (maximum forward-mutation frequency between 1000 and 10,000 ad-3 mutations per 10(6) survivors) for the induction of specific-locus mutations in the ad-3 region. Both biochemical and classical genetic tests were used to characterize the ICR-170-induced ad-3 mutations from each of the six treatments to distinguish the different genotypic classes and subclasses. The overall data base demonstrates that ICR-170-induced ad-3 mutations result exclusively from gene/point mutations at the ad-3A and ad-3B loci and not multilocus deletion mutations. In addition, the frequency of multiple-locus ad-3 mutations resulting from gene/point mutations at the ad-3A and ad-3B loci with a separate site of recessive lethal damage elsewhere in the genome increases as a function of dose. However, an exceptionally high frequency of multiple-locus ad-3 mutations consisting of gene/point mutations at the ad-3A and ad-3B loci with a separate site of closely linked recessive lethal damage was found at all doses. Comparison of the dose-response curves for the major classes and subclasses of ICR-170-induced ad-3 mutations demonstrates that the gene/point ad-3 mutations and multiple-locus ad-3 mutations with a separate site of recessive lethal damage elsewhere in the genome have different induction kinetics.(ABSTRACT TRUNCATED AT 400 WORDS)