RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Fabrication of nylon-6 and nylon-11 nanoplastics and evaluation in mammalian cells
Krovi, S. A., Caffaro, M. M. M., Aravamudhan, S., Mortensen, N. P., & Johnson, L. M. (2022). Fabrication of nylon-6 and nylon-11 nanoplastics and evaluation in mammalian cells. Nanomaterials, 12(15), Article 2699. https://doi.org/10.3390/nano12152699
Microplastics (MPs) and nanoplastics (NPs) exist in certain environments, beverages, and food products. However, the ultimate risk and consequences of MPs and NPs on human health remain largely unknown. Studies involving the biological effects of small-scale plastics have predominantly used commercially available polystyrene beads, which cannot represent the breadth of globally dominant plastics. Nylon is a commodity plastic that is used across various industry sectors with substantial global production. Here, a series of well-characterized nylon-11 and nylon-6 NPs were successfully fabricated with size distributions of approximately 100 nm and 500 nm, respectively. The facile fabrication steps enabled the incorporation of fluorescent tracers in these NPs to aid the intracellular tracking of particles. RAW 264.7 macrophages were exposed to nylon NPs in a dose-dependent manner and cytotoxic concentrations and cellular uptake were determined. These well-characterized nylon NPs support future steps to assess how the composition and physicochemical properties may affect complex biological systems and ultimately human health.