RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Exposure to road, railway, and aircraft noise and arterial stiffness in the SAPALDIA Study
Annual average noise levels and temporal noise characteristics
Foraster, M., Eze, I. C., Schaffner, E., Vienneau, D., Héritier, H., Endes, S., Rudzik, F., Thiesse, L., Pieren, R., Schindler, C., Schmidt-Trucksäss, A., Brink, M., Cajochen, C., Marc Wunderli, J., Röösli, M., & Probst-Hensch, N. (2017). Exposure to road, railway, and aircraft noise and arterial stiffness in the SAPALDIA Study: Annual average noise levels and temporal noise characteristics. Environmental Health Perspectives, 125(9), 097004. Article 097004. https://doi.org/10.1289/EHP1136
BACKGROUND: The impact of different transportation noise sources and noise environments on arterial stiffness remains unknown.
OBJECTIVES: We evaluated the association between residential outdoor exposure to annual average road, railway, and aircraft noise levels, total noise intermittency (IR), and total number of noise events (NE) and brachial-ankle pulse wave velocity (baPWV) following a cross-sectional design.
METHODS: We measured baPWV (meters/second) in 2,775 participants (49-81 y old) at the second follow-up (2010-2011) of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). We assigned annual average road, railway, and aircraft noise levels (Ldensource), total day- and nighttime NEtime and IRtime (percent fluctuation=0%, none or constant noise; percent fluctuation=100%, high fluctuation) at the most exposed façade using 2011 Swiss noise models. We applied multivariable linear mixed regression models to analyze associations.
RESULTS: Medians [interquartile ranges (IQRs)] were baPWV=13.4 (3.1) m/s; Ldenair (57.6% exposed)=32.8 (8.0) dB; Ldenrail (44.6% exposed)=30.0 (8.1) dB; Ldenroad (99.7% exposed): 54.2 (10.6) dB; NEnight=123 (179); NEday=433 (870); IRnight=73% (27); and IRday=63.8% (40.3). We observed a 0.87% (95% CI: 0.31, 1.43%) increase in baPWV per IQR of Ldenrail, which was greater with IRnight>80% or with daytime sleepiness. We observed a nonsignificant positive association between Ldenroad and baPWV in urban areas and a negative tendency in rural areas. NEnight, but not NEday, was associated with baPWV. Associations were independent of the other noise sources and air pollution.
CONCLUSIONS: Long-term exposure to railway noise, particularly in an intermittent nighttime noise environment, and to nighttime noise events, mainly related to road noise, may affect arterial stiffness, a major determinant of cardiovascular disease. Ascertaining noise exposure characteristics beyond average noise levels may be relevant to better understand noise-related health effects. https://doi.org/10.1289/EHP1136.