RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Graphene and topological insulators (TI) possess two-dimensional (2D) Dirac fermions with distinct physical properties. Integrating these two Dirac materials in a single device creates interesting opportunities for exploring new physics of interacting massless Dirac fermions. Here we report on a practical route to experimental fabrication of graphene–Sb2Te3 heterostructure. The graphene–TI heterostructures are prepared by using a dry transfer of chemical-vapor-deposition grown graphene film. ARPES measurements confirm the coexistence of topological surface states of Sb2Te3 and Dirac π bands of graphene, and identify the twist angle in the graphene–TI heterostructure. The results suggest a potential tunable electronic platform in which two different Dirac low-energy states dominate the transport behavior.