RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Expected budget impact and health outcomes of expanded use of vagus nerve stimulation therapy for drug-resistant epilepsy
Purser, M. F., Mladsi, D. M., Beckman, A., Barion, F., & Forsey, J. (2018). Expected budget impact and health outcomes of expanded use of vagus nerve stimulation therapy for drug-resistant epilepsy. Advances in Therapy, 35(10), 1686-1696. https://doi.org/10.1007/s12325-018-0775-0
INTRODUCTION: The objective was to estimate, from the perspective of a managed care organization in the United States, the budget impact and effect on health outcomes of expanded use of vagus nerve stimulation [VNS (VNS Therapy®)] among patients aged ≥ 12 years with drug-resistant epilepsy (DRE) with partial-onset seizures.
METHODS: An Excel model was developed to compare the costs of continued anti-epileptic drug (AED) treatment with the costs of VNS plus AED treatment. The number of people eligible for VNS was estimated using published prevalence data and an estimate of the percentage of eligible patients currently without VNS. Costs included VNS device, placement, programming, and battery changes; adverse events associated with VNS (cough, voice alteration, device removal resulting from surgical site infection); AEDs; and seizure-related costs affected by seizure frequency, which affects resource utilization (i.e., hospitalizations, emergency department visits, neurologist visits). To estimate the potential savings with VNS due to a reduction in seizure frequency, the budget impact model uses the results of an underlying Markov model to estimate seizure-related costs by seizure frequency. Transitions occurred among four health states, defined by number of seizures per month (i.e., seizure-free, ≤ 1, > 1 to < 10, ≥ 10) on a 3-month cycle based on published clinical trials and registry data.
RESULTS: VNS resulted in an estimated net cost savings, on average, over 5 years, due to the expected reduction in seizure frequency. The initial cost of the VNS device, placement, and programming was estimated to be offset 1.7 years after VNS device placement. Reductions in hospitalizations were the main contributor to the cost savings with VNS.
CONCLUSIONS: VNS is a proven intervention that offers a long-term solution for patients with DRE by reducing seizure frequency, which leads to lower resource utilization and lower costs.