RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Evaluation of pharmacokinetic interaction between PA-824 and midazolam in healthy adult subjects
Winter, H., Egizi, E., Erondu, N., Ginsberg, A., Rouse, D., Severynse-Stevens, D., Pauli, E., & Everitt, D. (2013). Evaluation of pharmacokinetic interaction between PA-824 and midazolam in healthy adult subjects. Antimicrobial Agents and Chemotherapy, 57(8), 3699-3703. https://doi.org/10.1128/AAC.02632-12
This study assessed the safety, tolerability, and pharmacokinetic interaction between PA-824, a novel antitubercular nitroimidazo-oxazine, and midazolam, a CYP3A4 substrate, in 14 healthy adult male and female subjects. The study followed up on observations in vitro that PA-824 caused weak and time-dependent inhibition of CYP3A4. Subjects received a single oral dose of midazolam (2 mg), followed by a 2-day washout. After the washout, all subjects received PA-824 (400 mg) once daily for 14 consecutive days. On day 14, all subjects received the final PA-824 dose coadministered with a 2-mg oral dose of midazolam. The pharmacokinetic endpoints AUC0–t, AUC0–?, and Cmax for midazolam and 1-hydroxy midazolam were compared between midazolam administered alone versus midazolam coadministered with PA-824. Statistical analysis demonstrated that the mean midazolam values of Cmax, AUC0–t, and AUC0–? parameters were reduced by ca. 16, 15, and 15%, respectively, when PA-824 was coadministered with midazolam. The total exposure (AUC) of 1-hydroxy midazolam was 13 to 14% greater when coadministered with PA-824 compared to midazolam administered alone. The Cmax of 1-hydroxy midazolam was similar between treatments. Based on these results, PA-824 does not inhibit or induce CYP3A4 to a clinically meaningful extent and is not likely to markedly affect the pharmacokinetics of CYP3A4 metabolized drugs.