RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Estimators of the form $\hat f_n(x) = (1/n) \sum^n_{i=1} \delta_n(x - x_i)$ of a probability density $f(x)$ are considered, where $x_1 \cdots x_n$ is a sample of $n$ observations from $f(x)$. In Part I, the properties of such estimators are discussed on the basis of their mean integrated square errors $E\lbrack\int(f_n(x) - f(x))^2dx\rbrack$ (M.I.S.E.). The corresponding development for discrete distributions is sketched and examples are given in both continuous and discrete cases. In Part II the properties of the estimator $\hat f_n(x)$ will be discussed with reference to various pointwise consistency criteria. Many of the definitions and results in both Parts I and II are analogous to those of Parzen [1] for the spectral density. Part II will appear elsewhere