RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Phytoremediation of highly water soluble and volatile organic xenobiotics is often inefficient because plants do not completely degrade these compounds through their rhizospheres. This results in phytotoxicity and/or volatilization of chemicals through the leaves, which can cause additional environmental problems. We demonstrate that endophytic bacteria equipped with the appropriate degradation pathway improve the in planta degradation of toluene. We introduced the pTOM toluene-degradation plasmid of Burkholderia cepacia G4 into B. cepacia L. S. 2.4, a natural endophyte of yellow lupine. After surface-sterilized lupine seeds were successfully inoculated with the recombinant strain, the engineered endophytic bacteria strongly degraded toluene, resulting in a marked decrease in its phytotoxicity, and a 50-70% reduction of its evapotranspiration through the leaves. This strategy promises to improve the efficiency of phytoremediating volatile organic contaminants