RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
An Empirical Study of Stabilities of Estimators and Variance Estimators in Unequal Probability Sampling (n = 3 or 4)
Bayless, DL., & Rao, JNK. (1970). An Empirical Study of Stabilities of Estimators and Variance Estimators in Unequal Probability Sampling (n = 3 or 4). Journal of the American Statistical Association, 65(332), 1645-1667.
Rao and Bayless [18] empirically investigated the stabilities of estimators of the population total and stabilities of their variance estimators for several methods of unequal probability sampling of two units $(n = 2)$ per stratum. In this article, after deriving the variances of variance estimators for general $n$ for the following methods: (a) the I.P.P.S. (inclusion probabilities proportional to size) methods of Fellegi, Sampford and Carroll-Hartley, (b) Des Raj's and Murthy's methods, (c) the Rao-Hartley-Cochran method, (d) Lahiri's method using a ratio estimator and (e) p.p.s. sampling with replacement using the customary estimator, we perform empirical studies for $n = 3$ and 4 along the lines of our previous article. A major conclusion is that Murthy's method may be preferable over the other methods when a stable estimator as well as a stable variance estimator are required