RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Ideally, inhaled therapy is driven by the needs of specific disease management. Lung biology interfaces with inhaler performance to allow optimal delivery of therapeutic agent for disease treatment. Inhalation aerosol products consist of the therapeutic agent, formulation, and device. The manufacturing specifications on each of the components, and their combination, allow accurate and reproducible control of measures of quality and in-vitro performance. These product variables in combination with patient variables, including co-ordination skill during inhaler use, intrinsic lung biology, disease and consequent pulmonary function, contribute to drug safety and efficacy outcomes. Due to the complexity of pulmonary drug delivery, predicting biological outcomes from first principles has been challenging. Ongoing research appears to offer new insights that may allow accurate prediction of drug behavior in the lungs. Disruptive innovations were characteristic of research and development in inhaled drug delivery at the end of the last century. Although there were relatively few new inhaled products launched in the first decade of the new millennium it was evident that the earlier years of exploration resulted in maturation of commercially successful technologies. A significant increase in new and generic products has occurred in the last decade and technical, regulatory and disease management trends are emerging. Some of these developments can trace their origins to earlier periods of creativity in the field while others are a reflection of advances in other areas of basic and computer, sciences and engineering. Select biological and technical advances are highlighted with reflections on the potential to impact future clinical and regulatory considerations. (C) 2020 Elsevier B.V. All rights reserved.