RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Efficient likelihood estimation of generalized structural equation models with a mix of normal and nonnormal responses
Rockwood, N. J. (2021). Efficient likelihood estimation of generalized structural equation models with a mix of normal and nonnormal responses. Psychometrika, 86(2), 642-667. https://doi.org/10.1007/s11336-021-09770-5
A maximum likelihood estimation routine is presented for a generalized structural equation model that permits a combination of response variables from various distributions (e.g., normal, Poisson, binomial, etc.). The likelihood function does not have a closed-form solution and so must be numerically approximated, which can be computationally demanding for models with several latent variables. However, the dimension of numerical integration can be reduced if one or more of the latent variables do not directly affect any nonnormal endogenous variables. The method is demonstrated using an empirical example, and the full estimation details, including first-order derivatives of the likelihood function, are provided.