RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
IL-1 alpha and IL-1 beta were evaluated for their ability to provide adjuvant activity for the induction of serum antibody responses when nasally administered with protein antigens in mice and rabbits. In mice, intranasal (i.n.) immunization with pneumococcal surface protein A (PspA) or tetanus toxoid (TT) combined with IL-1 beta induced protective immunity that was equivalent to that induced by parenteral immunization. Nasal immunization of awake (i.e., not anesthetized) rabbits with IL-1-adjuvanted vaccines induced highly variable serum antibody responses and was not as effective as parenteral immunization for the induction of antigen-specific serum IgG. However, in. immunization of deeply anesthetized rabbits with rPA + IL-1 alpha consistently induced rPA-specific serum IgG ELISA titers that were not significantly different than those induced by intramuscular (IM) immunization with rPA + alum although lethal toxin-neutralizing titers induced by nasal immunization were lower than those induced by IM immunization. Gamma scintigraphy demonstrated that the enhanced immunogenicity of nasal immunization in anesthetized rabbits correlated with an increased nasal retention of in. delivered non-permeable radio-labeled colloidal particles. Our results demonstrate that, in mice. IL-1 is an effective adjuvant for nasally administered vaccines for the induction of protective systemic immunity and that in non-rodent species, effective induction of systemic immunity with nasally administered vaccines may require formulations that ensure adequate retention of the vaccine within the nasal cavity. (C) 2010 Elsevier Ltd. All rights reserved