RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis
Mahadevan, R., Adhikari, S., Shakya, R., Wang, K., Dayton, D. C., Li, M., Pu, Y., & Ragauskas, A. J. (2016). Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis. Journal of Analytical and Applied Pyrolysis, 122, 95-105. https://doi.org/10.1016/j.jaap.2016.10.011
Torrefaction is a low-temperature process considered as an effective pretreatment technique to improve the grindability of biomass as well as enhance the production of aromatic hydrocarbons from Catalytic Fast Pyrolysis (CFP). This study was performed to understand the effect of torrefaction temperature on structural changes in the lignin macromolecule and its subsequent influence on in-situ CFP process. Lignin extracted from southern pine and switchgrass (via organosolv treatment) was torrefied at four different temperatures (150, 175, 200 and 225 degrees C) in a tubular reactor. Between the two biomass types studied, lignin from pine appeared to have greater thermal stability during torrefaction when compared with switchgrass lignin. The structural changes in lignin as a result of torrefaction were followed by using FTIR spectroscopy, solid state CP/MAS C-13 NMR, P-31 NMR spectroscopy and it was found that higher torrefaction temperature (200 and 225 degrees C) caused polycondensation and de-methoxylation of the aromatic units of lignin. Gel permeation chromatography analysis revealed that polycondensation during torrefaction resulted in an increase in the molecular weight and polydispersity of lignin. The torrefied lignin was subsequently used in CFP experiments using H(+)ZSM-5 catalyst in a micro-reactor (Py-GC/MS) to understand the effect of torrefaction on the product distribution from pyrolysis. It was observed that although the selectivity of benzene-toluene-xylene compounds from CFP of pine improved from 58.3% (torrefaction temp at 150 degrees C) to 69.0% (torrefaction temp at 225 degrees C), the severity of torrefaction resulted in a loss of overall aromatic hydrocarbon yield from 11.6% to 4.9% under same conditions. Torrefaction at higher temperatures also increased the yield of carbonaceous residues from 63.9% to 72.8%. Overall, torrefying lignin caused structural transformations in both type of lignins (switchgrass and pine), which is ultimately detrimental to achieving a higher aromatic hydrocarbon yield from CFP. (C) 2016 Elsevier B.V. All rights reserved.