RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Effect of substitution on the aniline moiety of the GPR88 agonist 2-PCCA
Synthesis, structure-activity relationships, and molecular modeling studies
Jin, C., Decker, A. M., Harris, D. L., & Blough, B. E. (2016). Effect of substitution on the aniline moiety of the GPR88 agonist 2-PCCA: Synthesis, structure-activity relationships, and molecular modeling studies. ACS Chemical Neuroscience, 7(10), 1418-1432. https://doi.org/10.1021/acschemneuro.6b00182
GPR88, an orphan receptor richly expressed in the striatum, is implicated in a number of basal ganglia-associated disorders. In order to elucidate the functions of GPR88, an in vivo probe appropriate for CNS investigation is required. We previously reported that 2-PCCA was able to modulate GPR88-mediated cAMP production through a G alpha(i)-coupled pathway. Early structure-activity relationship (SAR) studies suggested that the aniline moiety of 2-PCCA is a suitable site for diverse modifications. Aimed at elucidating structural requirements in this region, we have designed and synthesized a series of analogues bearing a variety of substituents at the phenyl ring of the aniline moiety. Several compounds (e.g., 5j, 5o) showed improved or comparable potency, but have lower lipophilicity than 2-PCCA (clogP 6.19). These compounds provide the basis for further optimization to probe GPR88 in vivo functions. Computational studies confirmed the SAR trends and supported the notion that 4'-substituents on the biphenyl ring exit through a largely hydrophobic binding site to the extracellular loop.