RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Dual role of glutathione in modulating camptothecin activity: Depletion potentiates activity, but conjugation enhances the stability of the topoisomerase I-DNA cleavage complex
Gamcsik, MP., Kasibhatla, MS., Adams, DJ., Flowers, JL., Colvin, OM., Manikumar, G., Wani, M., Wall, M., Kohlhagen, G., & Pommier, Y. (2001). Dual role of glutathione in modulating camptothecin activity: Depletion potentiates activity, but conjugation enhances the stability of the topoisomerase I-DNA cleavage complex. Molecular Cancer Therapeutics, 1(1), 11-20.
Depletion of glutathione (GSH) in MCF-7 and MDA-MB-231 cell lines by pretreatment with the GSH synthesis inhibitor buthionine sulfoximine potentiated the activity of 10,11-methylenedioxy-20(S)-camptothecin, SN-38 [7-ethyl-10-hydroxy-20(S)-camptothecin], topotecan, and 7-chloromethyl-10,11-methylenedioxy-20(S)camptothecin (CMMDC). The greatest potentiation was observed with the alkylating camptothecin CMMDC. Buthionine sulfoximine pretreatment also increased the number of camptothecin-induced DNA-protein crosslinks, indicating that GSH affects the mechanism of action of camptothecin. We also report that GSH interacts with CMMDC to form a stable conjugate, 7-(glutathionylmethyl)-10,11-methylenedioxy-20(S)- camptothecin (GSMMDC), which is formed spontaneously in buffered solutions and in MCF-7 cells treated with CMMDC. GSMMDC was synthesized and found to be nearly as active as 10,11-methylenedioxy-20(S)-camptothecin in a topoisomerase (topo) mediated DNA nicking assay. The resulting topo I cleavage complexes were remarkably stable. In cell culture, GSMMDC displayed potent growth-inhibitory activity against U937 and P388 leukemia cell lines. GSMMDC was not active against a topo I-deficient P388 cell line, indicating that topo I is its cellular target. Peptide-truncated analogues of GSMMDC were prepared and evaluated. All three derivatives [7-(gamma-glutamylcysteinylmethyl)-10,11-methylenedioxy-20(S)- camptothecin, 7-(cysteinylglycylmethyl)-10,11-methylenedioxy-20(S)-camptothecin, and 7-(cysteinylmethyl)-10,11-methylenedioxy-20(S)- camptothecin] displayed topo I and, cell growth-inhibitory activity. These results suggest that 7-peptidyl derivatives represent a new class of camptothecin analogues