RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Donor genetic and non-genetic factors affecting red blood cell transfusion effectiveness
Roubinian, N. H., Reese, S. E., Qiao, H., Plimier, C., Fang, F., Page, G. P., Cable, R. G., Custer, B., Gladwin, M. T., Goel, R., Harris, B., Hendrickson, J. E., Kanias, T., Kleinman, S., Mast, A. E., Sloan, S. R., Spencer, B. R., Spitalnik, S. L., Busch, M. P., & Hod, E. A. (2022). Donor genetic and non-genetic factors affecting red blood cell transfusion effectiveness. JCI insight, 7(1), Article e152598. https://doi.org/10.1172/jci.insight.152598
BACKGROUND. RBC transfusion effectiveness varies due to donor, component, and recipient factors. Prior studies identified characteristics associated with variation in hemoglobin increments following transfusion. We extended these observations, examining donor genetic and nongenetic factors affecting transfusion effectiveness. METHODS. This is a multicenter retrospective study of 46,705 patients and 102,043 evaluable RBC transfusions from 2013 to 2016 across 12 hospitals. Transfusion effectiveness was defined as hemoglobin, bilirubin, or creatinine increments following single RBC unit transfusion. Models incorporated a subset of donors with data on single nucleotide polymorphisms associated with osmotic and oxidative hemolysis in vitro. Mixed modeling accounting for repeated transfusion episodes identified predictors of transfusion effectiveness. RESULTS. Blood donor (sex, Rh status, fingerstick hemoglobin, smoking), component (storage duration, gamma irradiation, leukoreduction, apheresis collection, storage solution), and recipient (sex, BMI, race and ethnicity, age) characteristics were associated with hemoglobin and bilirubin, but not creatinine, increments following RBC transfusions. Increased storage duration was associated with increased bilirubin and decreased hemoglobin increments, suggestive of in vivo hemolysis following transfusion. Donor G6PD deficiency and polymorphisms in SEC14L4, HBA2, and MYO9B genes were associated with decreased hemoglobin increments. Donor G6PD deficiency and polymorphisms in SEC14L4 were associated with increased transfusion requirements in the subsequent 48 hours. CONCLUSION. Donor genetic and other factors, such as RBC storage duration, affect transfusion effectiveness as defined by decreased hemoglobin or increased bilirubin increments. Addressing these factors will provide a precision medicine approach to improve patient outcomes, particularly for chronically transfused RBC recipients, who would most benefit from more effective transfusion products.