RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Graber, M., Franklin, N., & Gordon, R. (2005). Diagnostic error in internal medicine. Archives of Internal Medicine, 165(13), 1493-1499. https://doi.org/10.1001/archinte.165.13.1493
Background: The goal of this study was to determine the relative contribution of system-related and cognitive components to diagnostic error and to develop a comprehensive working taxonomy. Methods: One hundred cases of diagnostic error involving internists were identified through autopsy discrepancies, quality assurance activities, and voluntary reports. Each case was evaluated to identify system-related and cognitive factors underlying error using record reviews and, if possible, provider interviews. Results: Ninety cases involved injury, including 33 deaths. The underlying contributions to error fell into 3 natural categories: 'no fault,' system-related, and cognitive. Seven cases reflected no-fault errors alone. In the remaining 93 cases, we identified 548 different system-related or cognitive factors (5.9 per case). System-related factors contributed to the diagnostic error in 65% of the cases and cognitive factors in 74%. The most common system-related factors involved problems with policies and procedures, inefficient processes, teamwork, and communication. The most common cognitive problems involved faulty synthesis. Premature closure, ie, the failure to continue considering reasonable alternatives after an initial diagnosis was reached, was the single most common cause. Other common causes included faulty context generation, misjudging the salience of findings, faulty perception, and errors arising from the use of heuristics. Faulty or inadequate knowledge was uncommon. Conclusions: Diagnostic error is commonly multifactorial in origin, typically involving both system-related and cognitive factors. The results identify the dominant problems that should be targeted for additional research and early reduction; they also further the development of a comprehensive taxonomy for classifying diagnostic errors