RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Development and application of a robust speciation method for determination of six arsenic compounds present in human urine
Milstein, L., Essader, A., Pellizzari, E., Fernando, R., Raymer, J., Levine, K., & Akinbo, O. (2003). Development and application of a robust speciation method for determination of six arsenic compounds present in human urine. Environmental Health Perspectives, 111(3), 293-296.
Six arsenic species [arsenate, arsenite, arsenocholine, arsenobetaine, monomethyl arsonic acid, and dimethyl arsinic acid] present in human urine were determined using ion-exchange chromatography combined with inductively coupled plasma mass spectrometry (IC-ICP-MS). Baseline separation was achieved for all six species as well as for the internal standard (potassium hexahydroxy antimonate V) in a single chromatographic run of less than 30 min, using an ammonium carbonate buffer gradient (between 10 and 50 mM) at ambient temperature, in conjunction with cation- and anion-exchange columns in series. The performance of the method was evaluated with respect to linearity, precision, accuracy, and detection limits. This method was applied to determine the concentration of these six arsenic species in human urine samples (n = 251) collected from a population-based exposure assessment survey. Method precision was demonstrated by the analysis of duplicate samples that were prepared over a 2-year analysis period. Total arsenic was also determined for the urine samples using flow injection analysis coupled to ICP-MS. The summed concentration of the arsenic species was compared with the measured arsenic total to demonstrate mass balance