RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Background High-throughput sequence (HTS) data exhibit position-specific nucleotide biases that obscure the intended signal and reduce the effectiveness of these data for downstream analyses. These biases are particularly evident in HTS assays for identifying regulatory regions in DNA (DNase-seq, ChIP-seq, FAIRE-seq, ATAC-seq). Biases may result from many experiment-specific factors, including selectivity of DNA restriction enzymes and fragmentation method, as well as sequencing technology-specific factors, such as choice of adapters/primers and sample amplification methods.
Results We present a novel method to detect and correct position-specific nucleotide biases in HTS short read data. Our method calculates read-specific weights based on aligned reads to correct the over- or underrepresentation of position-specific nucleotide subsequences, both within and adjacent to the aligned read, relative to a baseline calculated in assay-specific enriched regions. Using HTS data from a variety of ChIP-seq, DNase-seq, FAIRE-seq, and ATAC-seq experiments, we show that our weight-adjusted reads reduce the position-specific nucleotide imbalance across reads and improve the utility of these data for downstream analyses, including identification and characterization of open chromatin peaks and transcription-factor binding sites.
Conclusions A general-purpose method to characterize and correct position-specific nucleotide sequence biases fills the need to recognize and deal with, in a systematic manner, binding-site preference for the growing number of HTS-based epigenetic assays. As the breadth and impact of these biases are better understood, the availability of a standard toolkit to correct them will be important.