RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Newlin, D., Regalia, PA., Seidman, TI., & Bobashev, G. (2012). Control theory and addictive behavior. In B. Gutkin, & SH. Ahmed (Eds.), Computational Neuroscience of Drug Addiction (pp. 57-108). Springer. https://doi.org/10.1007/978-1-4614-0751-5_3
Control theory provides a powerful conceptual framework and mathematical armamentarium for modeling addictive behavior. It is particularly appropriate for repetitive, rhythmic behavior that occurs over time, such as drug use. We reframe seven selected theories of addictive behavior in control theoretic terms (heroin addiction model, opponent process theory, respondent conditioning, evolutionary theory, instrumental conditioning, incentive sensitization, and autoshaping) and provide examples of quantitative simulations for two of these models (opponent process theory and instrumental conditioning). This paper discusses theories of addiction to lay the foundation for control theoretic analyses of drug addiction phenomena, but does not review the empirical evidence for or against any particular model. These seven addiction models are then discussed in relation to the addictive phenomena for which they attempt to account and specific aspects of their feedback systems.