RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis
Loh, P.-R., Bhatia, G., Gusev, A., Finucane, H. K., Bulik-Sullivan, B. K., Pollack, S. J., Schizophrenia Working Group of the Psychiatric Genomics Consortium, de Candia, T. R., Lee, S. H., Wray, N. R., Kendler, K. S., O'Donovan, M. C., Neale, B. M., Patterson, N., & Price, A. L. (2015). Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nature Genetics, 47(12), 1385-1392. https://doi.org/10.1038/ng.3431
Heritability analyses of genome-wide association study (GWAS) cohorts have yielded important insights into complex disease architecture, and increasing sample sizes hold the promise of further discoveries. Here we analyze the genetic architectures of schizophrenia in 49,806 samples from the PGC and nine complex diseases in 54,734 samples from the GERA cohort. For schizophrenia, we infer an overwhelmingly polygenic disease architecture in which ≥71% of 1-Mb genomic regions harbor ≥1 variant influencing schizophrenia risk. We also observe significant enrichment of heritability in GC-rich regions and in higher-frequency SNPs for both schizophrenia and GERA diseases. In bivariate analyses, we observe significant genetic correlations (ranging from 0.18 to 0.85) for several pairs of GERA diseases; genetic correlations were on average 1.3 tunes stronger than the correlations of overall disease liabilities. To accomplish these analyses, we developed a fast algorithm for multicomponent, multi-trait variance-components analysis that overcomes prior computational barriers that made such analyses intractable at this scale.