RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles
Gatto, N. M., Henderson, V. W., Hodis, H. N., St John, J. A., Lurmann, F., Chen, J.-C., & Mack, W. J. (2014). Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles. NeuroToxicology, 40, 1-7. https://doi.org/10.1016/j.neuro.2013.09.004
While experiments in animals demonstrate neurotoxic effects of particulate matter (PM) and ozone (O-3), epidemiologic evidence is sparse regarding the relationship between different constituencies of air pollution mixtures and cognitive function in adults. We examined cross-sectional associations between various ambient air pollutants [O-3, PM2.5 and nitrogen dioxide (NO2)] and six measures of cognitive function and global cognition among healthy, cognitively intact individuals (n = 1496, mean age 60.5 years) residing in the Los Angeles Basin. Air pollution exposures were assigned to each residential address in 2000-06 using a geographic information system that included monitoring data. A neuropsychological battery was used to assess cognitive function; a principal components analysis defined six domain-specific functions and a measure of global cognitive function was created. Regression models estimated effects of air pollutants on cognitive function, adjusting for age, gender, race, education, income, study and mood. Increasing exposure to PM2.5 was associated with lower verbal learning (beta = -0.32 per 10 mu g/m(3) PM2.5, 95% CI = -0.63, 0.00; p = 0.05). Ambient exposure to NO2 >20 ppb tended to be associated with lower logical memory. Compared to the lowest level of exposure to ambient O-3, exposure above 49 ppb was associated with lower executive function. Including carotid artery intima-media thickness, a measure of subclinical atherosclerosis, in models as a possible mediator did not attenuate effect estimates. This study provides support for cross-sectional associations between increasing levels of ambient O-3, PM2.5 and NO2 and measures of domain-specific cognitive abilities. (C) 2014 Elsevier Inc. All rights reserved.