RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Classification of response regulators based on their surface properties
Kojetin, D. J., Sullivan, D. M., Thompson, R. J., & Cavanagh, J. (2007). Classification of response regulators based on their surface properties. In MI. Simon, BR. Crane, & A. Crane (Eds.), TWO-COMPONENT SIGNALING SYSTEMS, PT A (pp. 141-169). Elsevier Inc./Academic Press. https://doi.org/10.1016/S0076-6879(06)22007-X
The two-component signal transduction system is a ubiquitous signaling module present in most prokaryotic and some eukaryotic systems. Two conserved components, a histidine protein kinase (HPK) protein and a response regulator (RR) protein, function as a biological switch, sensing and responding to changes in the environment, thereby eliciting a specific response. Extensive studies have classified the HPK and RR proteins using primary sequence characteristics, domain identity, domain organization, and biological function. We propose that structural analysis of the surface properties of the highly conserved receiver domain of RRs can be used to build on previous classification methods. Our studies of the OmpR subfamily RRs in Bacillus subtilis and Escherichia coli reveal a notable correlation between the RR receiver domain surface classification and previous classification of cognate HPK proteins. We have extended these studies to analyze the receiver domains of all predicted RR proteins in the marine-dwelling bacterium Vibrio vulnificus.