RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Classification of EEG features for prediction of working memory load
Abrantes, A., Comitz, E., & Mazur, L. (2016). Classification of EEG features for prediction of working memory load. In Advances in the human side of service engineering (pp. 115-126). Springer. https://doi.org/10.1007/978-3-319-41947-3_12
The objective of this research was to compare classification methods aimed at predicting working memory (WM) load. Electroencephalogram (EEG) data was collected from physicians while performing basic WM tasks and simulated medical scenarios. Data processing was performed to remove noise from the signal used for analysis (e.g., muscle activity, eye-blinks). The data from basic WM tasks was used to develop and test the four classification models (LASSO regression, support vector machines (SVM), nearest shrunken centroids (NSC), and iterated supervised principal components (ISPC) to predict a WM state indicative of physicians’ optimal performance. The naïve misclassification rate was 19.74 %; LASSO and SVM outperformed this threshold: 18.10 and 12.21 % respectively). Both classification models had relatively high-specificity (LASSO: 97.2 %; SVM: 99.8 %); but relatively low-sensitivity LASSO: 20.7 %; SVM: 39.6 %). Results from simulated medical scenarios suggest that physicians were approximately 83 % of the time in the WM state that is likely indicative of optimal performance.