RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Chronic cigarette smoke-induced epigenomic changes precede sensitization of bronchial epithelial cells to single-step transformation by KRAS mutations
Hwang, S. Y. (2017). Chronic cigarette smoke-induced epigenomic changes precede sensitization of bronchial epithelial cells to single-step transformation by KRAS mutations. Cancer Cell, 32(3), 360-+. https://doi.org/10.1016/j.ccell.2017.08.006
We define how chronic cigarette smoke-induced time-dependent epigenetic alterations can sensitize human bronchial epithelial cells for transformation by a single oncogene. The smoke-induced chromatin changes include initial repressive polycomb marking of genes, later manifesting abnormal DNA methylation by 10 months. At this time, cells exhibit epithelial-to-mesenchymal changes, anchorage-independent growth, and upregulated RAS/MAPK signaling with silencing of hypermethylated genes, which normally inhibit these pathways and are associated with smoking-related non-small cell lung cancer. These cells, in the absence of any driver gene mutations, now transform by introducing a single KRAS mutation and form adenosquamous lung carcinomas in mice. Thus, epigenetic abnormalities may prime for changing oncogene senescence to addiction for a single key oncogene involved in lung cancer initiation.