RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Characterization of occupational smoke exposure among wildland firefighters in the midwestern United States
Wu, C.-M., Song, C. C., Chartier, R., Kremer, J., Naeher, L., & Adetona, O. (2021). Characterization of occupational smoke exposure among wildland firefighters in the midwestern United States. Environmental Research, 193, Article 110541. https://doi.org/10.1016/j.envres.2020.110541
Wildland firefighters are repeatedly exposed to elevated levels of wildland fire smoke (WFS) while protecting lives and properties from wildland fires. Studies reporting personal exposure concentrations of air pollutants in WFS during fire suppression or prescribed burn activities have been geographically limited to the western and southeastern United States. The objective of this study is to characterize exposure concentrations of air pollutants in WFS emissions among wildland firefighters who conducted prescribed burns in the Midwest. Between 2016 and 2019, a total of 35 firefighters (31 males and 4 females, age of 35.63 ± 9.31 years) were recruited to participate in this study. Personal particulate matter 2.5 (PM
2.5) and carbon monoxide (CO) exposure concentrations were measured during prescribed burns. The level of black carbon (BC) in WFS particulates was determined using the light transmission technique, while trace metal composition was analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results showed geometric means for PM
2.5, CO, and BC concentrations were 1.43 ± 0.13 mg/m
3, 7.02 ± 0.69 ppm, and 58.79 ± 5.46 μg/m
3, respectively. Although no occupational exposure limits (OELs) were exceeded by 8-h time-weighted average (TWA) exposure concentration observed in the firefighters, a total of 28 personal CO exposure concentrations were above the National Institute for Occupational Safety and Health (NIOSH) Recommended Exposure Limit (REL) Ceiling (200 ppm) for CO. PM
2.5 and CO concentrations were about 2-7 times higher in the Midwest than the other regions. Firefighters who performed holding had higher CO exposure concentrations compared to firefighters who performed lighting (p < 0.01), while lighters were exposed to higher level of BC in the smoke particulates (p < 0.01), possibly due to the domination of exposure by different combustion sources and stages. The levels of trace metals in WFS particulates were well below the corresponding OELs and no task-related difference was observed except for manganese. Our results suggest that wildland firefighters in the midwestern region have higher WFS exposures while working at prescribed burns compared to those western and southeastern United States.