RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Cannabinoid receptor interacting protein (CRIP1a) attenuates CB1R signaling in neuronal cells
Blume, L. C., Eldeeb, K., Bass, C. E., Selley, D. E., & Howlett, A. C. (2015). Cannabinoid receptor interacting protein (CRIP1a) attenuates CB1R signaling in neuronal cells. Cellular Signalling, 27(3), 716-726. https://doi.org/10.1016/j.cellsig.2014.11.006
CBI cannabinoid receptors (CB1R) are one of the most abundantly expressed G protein coupled receptors (GPCR) in the CNS and regulate diverse neuronal functions. The identification of GPCR interacting proteins has provided additional insight into the fine-tuning and regulation of numerous GPCRs. The cannabinoid receptor interacting protein 1a (CRIP1a) binds to the distal carboxy terminus of CB1R, and has been shown to alter CB1R-mediated neuronal function [1]. The mechanisms by which CRIP1a regulates CB1R activity have not yet been identified; therefore the focus of this investigation is to examine the cellular effects of CRIP1a on CB1R signaling using neuronal N18TG2 cells stably transfected with CRIP1a over-expressing and CRIP1a knockdown constructs. Modulation of endogenous CRIP1 a expression did not alter total levels of CB1R, ERK, or forskolin-activated adenylyl cyclase activity. When compared to WT cells, CRIP1a over-expression reduced basal phosphoERK levels, whereas depletion of CRIP1a augmented basal phosphoERK levels. Stimulation of phosphoERK by the CB1R agonists WIN55212-2, CP55940 or methanandamide was unaltered in CRIP1a over-expressing clones compared with WT. However, CRIP1 a knockdown clones exhibited enhanced ERIC phosphorylation efficacy in response to CP55940. In addition, CRIP1a knockdown clones displayed a leftward shift in CP55940-mediated inhibition of forskolin-stimulated cAMP accumulation. CB1R-mediated G(i3) and G(o) activation by CP99540 was attenuated by CRIP1a over-expression, but robustly enhanced in cells depleted of CRIP1a. Conversely, CP55940-mediated and G(i2) activation was significant enhanced in cells over-expressing CRIP1a, but not in cells deficient of CRIP1a. These studies suggest a mechanism by which endogenous levels of CRIP1a modulate CB1R-mediated signal transduction by facilitating a G(i/o) protein subtype preference for G(i1) and G(i2), accompanied by an overall suppression of G-protein-mediated signaling in neuronal cells. (C) 2014 Elsevier Inc. All rights reserved.