RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Calibration Weighting for Nonresponse that is Not Missing at Random
Allowing More Calibration than Response-Model Variables
Kott, P. S., & Liao, D. (2017). Calibration Weighting for Nonresponse that is Not Missing at Random: Allowing More Calibration than Response-Model Variables. Journal of Survey Statistics and Methodology, 5(2), 159-174. https://doi.org/10.1093/jssam/smx003
Calibration weighting can be used to remove bias when unit nonresponse is a function of one or more survey variables. This is done by allowing the model variables in the weight-adjustment function to differ from the variables in the calibration equation. An extension of calibration weighting allows there to be more calibration variables than model variables. Rather than equating the two sides of a calibration equation, the difference between the sides is minimized in some sense. This paper discusses different ways of doing that, assuming one knows the correct form and arguments of the response function. A promising solution results from an alternative version of the calibration equation that essentially reduces the number of calibration equations to be equal to the number of model variables. A helpful insight into choosing calibration variables for given model variables follows.