RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Bioengineering of physiologically functional intrinsically innervated human internal anal sphincter constructs
Gilmont, R. R., Raghavan, S., Somara, S., & Bitar, K. N. (2014). Bioengineering of physiologically functional intrinsically innervated human internal anal sphincter constructs. Tissue Engineering - Part A., 20(11-12), 1603-1611. https://doi.org/10.1089/ten.TEA.2013.0422
Muscle replacement for patients suffering from extensive tissue loss or dysfunction is a major objective of regenerative medicine. To achieve functional status, bioengineered muscle replacement constructs require innervation. Here we describe a method to bioengineer functionally innervated gut smooth muscle constructs using neuronal progenitor cells and smooth muscle cells isolated and cultured from intestinal tissues of adult human donors. These constructs expressed markers for contractile smooth muscle, glial cells, and mature neuronal populations. The constructs responded appropriately to physiologically relevant neurotransmitters, and neural network integration was demonstrated by responses to electrical field stimulation. The ability of enteric neuroprogenitor cells to differentiate into neuronal populations provides enormous potential for functional innervation of a variety of bioengineered muscle constructs in addition to gut. Functionally innervated muscle constructs offer a regenerative medicine-based therapeutic approach for neuromuscular replacement after trauma or degenerative disorders.