RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Biochemical and molecular analysis of spontaneous and induced mutations at the mouse Mod-1 locus
Cobb, R., Burkhart, J. G., Dubins, J. S., Barnett, L., & Lewis, S. (1990). Biochemical and molecular analysis of spontaneous and induced mutations at the mouse Mod-1 locus. Mutation Research - Environmental Mutagenesis and Related Subjects Including Methodology, 234(1), 1-7. https://doi.org/10.1016/0165-1161(90)90024-I
We have analyzed five Mod-1 (malic enzyme) mutants at the molecular and biochemical level. Four of these mutants, three electrophoretic variants and one null mutant, were induced by ethylnitrosourea (ENU). Another null mutant was the result of a spontaneous mutation. All of these mutations were heritable in a Mendelian fashion and viable in the homozygous condition. Restriction endonuclease and Southern blot analysis revealed that the spontaneous null mutant possessed an altered restriction fragment banding pattern. All of the ENU-induced mutants possessed normal restriction fragment banding patterns. All 5 mutants produced normal levels of Mod-1-specific mRNA. Only the spontaneous null mutant produced mRNA with altered size, which was consistent with the altered DNA-banding pattern. MOD-1 enzyme activity levels were normal in the three ENU-induced mutants with altered electrophoretic mobility. Enzyme activity was significantly lower than normal in tissues from animals homozygous for the null alleles, however, using Western blot analysis, low but significant levels of MOD-1 protein in Mod-1 null homozygotes were detected