RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
The β-isoform of BCCIP promotes ADP release from the RAD51 presynaptic filament and enhances homologous DNA pairing
Kelso, A. A., Goodson, S. D., Watts, L. E., Ledford, L. L., Waldvogel, S. M., Diehl, J. N., Shah, S. B., Say, A. F., White, J. D., & Sehorn, M. G. (2017). The β-isoform of BCCIP promotes ADP release from the RAD51 presynaptic filament and enhances homologous DNA pairing. Nucleic Acids Research, 45(2), 711-725. https://doi.org/10.1093/nar/gkw877
Homologous recombination (HR) is a template-driven repair pathway that mends DNA double-stranded breaks (DSBs), and thus helps to maintain genome stability. The RAD51 recombinase facilitates DNA joint formation during HR, but to accomplish this task, RAD51 must be loaded onto the single-stranded DNA. DSS1, a candidate gene for split hand/split foot syndrome, provides the ability to recognize RPA-coated ssDNA to the tumor suppressor BRCA2, which is complexed with RAD51. Together BRCA2-DSS1 displace RPA and load RAD51 onto the ssDNA. In addition, the BRCA2 interacting protein BCCIP normally colocalizes with chromatin bound BRCA2, and upon DSB induction, RAD51 colocalizes with BRCA2-BCCIP foci. Down-regulation of BCCIP reduces DSB repair and disrupts BRCA2 and RAD51 foci formation. While BCCIP is known to interact with BRCA2, the relationship between BCCIP and RAD51 is not known. In this study, we investigated the biochemical role of the β-isoform of BCCIP in relation to the RAD51 recombinase. We demonstrate that BCCIPβ binds DNA and physically and functionally interacts with RAD51 to stimulate its homologous DNA pairing activity. Notably, this stimulatory effect is not the result of RAD51 nucleoprotein filament stabilization; rather, we demonstrate that BCCIPβ induces a conformational change within the RAD51 filament that promotes release of ADP to help maintain an active presynaptic filament. Our findings reveal a functional role for BCCIPβ as a RAD51 accessory factor in HR.