RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Analyzing the role of microRNAs in schizophrenia in the context of common genetic risk variants
Hauberg, M. E., Roussos, P., Grove, J., Børglum, A. D., Mattheisen, M., & Schizophrenia Working Group of the Psychiatric Genomics Consortium (2016). Analyzing the role of microRNAs in schizophrenia in the context of common genetic risk variants. JAMA Psychiatry, 73(4), 369-377. https://doi.org/10.1001/jamapsychiatry.2015.3018
IMPORTANCE The recent implication of 108 genomic loci in schizophrenia marked a great advancement in our understanding of the disease. Against the background of its polygenic nature there is a necessity to identify how schizophrenia risk genes interplay. As regulators of gene expression, microRNAs (miRNAs) have repeatedly been implicated in schizophrenia etiology. It is therefore of interest to establish their role in the regulation of schizophrenia risk genes in disease-relevant biological processes.
OBJECTIVE To examine the role of miRNAs in schizophrenia in the context of disease-associated genetic variation.
DESIGN, SETTING, AND PARTICIPANTS The basis of this study was summary statistics from the largest schizophrenia genome-wide association study meta-analysis to date (83 550 individuals in a meta-analysis of 52 genome-wide association studies) completed in 2014 along with publicly available data for predicted miRNA targets. We examined whether schizophrenia risk genes were more likely to be regulated by miRNA. Further, we used gene set analyses to identify miRNAs that are regulators of schizophrenia risk genes.
MAIN OUTCOMES AND MEASURES Results from association tests for miRNA targetomes and related analyses.
RESULTS In line with previous studies, we found that similar to other complex traits, schizophrenia risk genes were more likely to be regulated by miRNAs (P < 2 x 10(-16)). Further, the gene set analyses revealed several miRNAs regulating schizophrenia risk genes, with the strongest enrichment for targets of miR-9-5p (P = .0056 for enrichment among the top 1% most-associated single-nucleotide polymorphisms, corrected for multiple testing). It is further of note that MIR9-2 is located in a genomic region showing strong evidence for association with schizophrenia (P = 7.1 x 10(-8)). The second and third strongest gene set signals were seen for the targets of miR-485-5p and miR-137, respectively.
CONCLUSIONS AND RELEVANCE This study provides evidence for a role of miR-9-5p in the etiology of schizophrenia. Its implication is of particular interest as the functions of this neurodevelopmental miRNA tie in with established disease biology: it has a regulatory loop with the fragile X mental retardation homologue FXR1 and regulates dopamine D-2 receptor density.