RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects
Åstrand, A., Guerrieri, D., Vikingsson, S., Kronstrand, R., & Green, H. (2020). In vitro characterization of new psychoactive substances at the μ-opioid, CB1, 5HT1A, and 5-HT2A receptors—On-target receptor potency and efficacy, and off-target effects. Forensic Science International, 317, Article 110553. https://doi.org/10.1016/j.forsciint.2020.110553
New psychoactive substances (NPS) appear on the recreational market on a monthly basis, with unclear toxicology, resulting in an increasing number of fatalities. Identification of drug targets and potencies is crucial for understanding and treating intoxications and for scheduling processes. In this study 60 NPS and metabolites belonging to opioids, cannabinoids and serotonergic hallucinogens classes were screened for in vitro activation of the mu-opioid, CB1, 5-HT1A and 5-HT2A receptors using the AequoZen cell system. Fentanyl and NBOMe analogues were chosen for full dose-response characterization of the mu-opioid and 5-HT2A receptors, respectively.
Most substances activated their corresponding target receptor. The most potent mu-opioid receptor agonists were 2-fluorofentanyl (EC50 = 1.0 nM), carfentanil (EC50 = 2.7 nM) and acrylfentanyl (EC50 = 2.8 nM) and in total a >1500-fold difference was seen among the tested compounds. Moreover, furanylfentanyl, 4-methoxybutyrylfentanyl and valerylfentanyl acted as partial agonists of the mu-receptor. On the 5-HT2A receptor, bromo-dragonfly showed the highest potency (EC50 = 0.05 nM, 400 times more potent than LSD), followed by most NBOMe compounds with EC50 values ranging from 0.11 nM (for 25N-NBOMe) to 1.3 nM (for 25T4-NBOMe)). Off-target activation of the mu-opioid receptor was identified for piperazines, phenethylamines (in particular NBOMe and 2C compounds) and tryptamines. Moreover, the synthetic cannabinoid metabolite 3-carboxy indole PB-22 activated the 5-HT2A receptor. Bromo-dragonfly was the only compound that activated all four receptors. These results highlight the possible interplay of known and unknown NPS targets and unveil its complexity. Moreover, the detailed, quantitative information presented facilitates our further understanding of NPS toxicology. (c) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).