RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Accumulation and expression in human synovial fluids and rheumatoid synovial tissue
Fava, R. A., Olsen, N. J., Spencer-Green, G., Yeo, T. K., Yeo, T. K., Berse, B., Jackman, R. W., Senger, D. R., Dvorak, H. F., & Brown, L. F. (1994). Vascular permeability factor/endothelial growth factor (VPF/VEGF): Accumulation and expression in human synovial fluids and rheumatoid synovial tissue. Journal of Experimental Medicine, 180(1), 341-346. https://doi.org/10.1084/jem.180.1.341
Vascular permeability factor (VPF, also known as vascular endothelial growth factor or VEGF), is a potent microvascular permeability enhancing cytokine and a selective mitogen for endothelial cells. It has been implicated in tumor angiogenesis and ascites fluid accumulation. Since development of the destructive synovial pannus in rheumatoid arthritis (RA) is associated with changes in vascular permeability (synovial fluid accumulation), synovial cell hyperplasia, and angiogenesis, we examined synovial fluids (SFs) and joint tissue for the expression and local accumulation of VPF/VEGF. VPF/VEGF was detected in all of 21 synovial fluids examined and when measured by an immunofluorimetric assay, ranged from 6.9 to 180.5 pM. These levels are biologically significant, since < 1 pM VPF/VEGF can elicit responses from its target cells, endothelial cells. Levels of VPF/VEGF were highest in rheumatoid arthritis fluids (n = 10), with a mean value (+/- SEM) of 59.1 +/- 18.0 pM, vs. 21.4 +/- 2.3 pM for 11 SFs from patients with other forms of arthritis (p = 0.042). In situ hybridization studies that were performed on joint tissues from patients with active RA revealed that synovial lining macrophages strongly expressed VPF/VEGF mRNA, and that microvascular endothelial cells of nearby blood vessels strongly expressed mRNA for the VPF/VEGF receptors, flt-1 and KDR. Immunohistochemistry performed on inflamed rheumatoid synovial tissue revealed that the VPF/VEGF peptide was localized to macrophages within inflamed synovium, as well as to microvascular endothelium, its putative target in the tissue. Together, these findings indicate that VPF/VEGF may have an important role in the pathogenesis of RA.