RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Variability in personal exposure to ultrafine and fine particles by microenvironment among adolescents in Cincinnati
Turner, A., Ryan, P. H., Ingram, S., Chariter, R., Wolfe, C., & Cho, S. H. (2024). Variability in personal exposure to ultrafine and fine particles by microenvironment among adolescents in Cincinnati. Science of the Total Environment, 946, Article 173806. https://doi.org/10.1016/j.scitotenv.2024.173806
Personal exposure to air pollution is influenced by an individual's time-activity patterns, but data regarding personal exposure to air pollution among children populations is lacking. The objective of this study was to characterize personal exposure to both PM2.5 and ultrafine particles (UFPs) using two portable real-time monitors, combined with GPS logging, and describe the relationship between these exposures across time and microenvironments among adolescents with asthma. Participants completed personal exposure monitoring for seven consecutive days and PM2.5 and UFP concentrations experienced in five microenvironments were determined using GPS location and mobility data. Average UFP and PM2.5 exposure varied across microenvironments with the highest average UFP exposure concentrations observed in transit (10,910 +/- 27,297 p/cc), though correlations between UFP and PM2.5 concentrations in transit were low (0.24) and did not reach statistical significance (p > 0.05). We calculated exposure time ratios for each participant. Across participants, UFP exposures within the transit environment demonstrated the highest ratio (average exposure-time ratio = 1.91) though only 3 % of overall sampling time among all participants was monitored in transit (74/2840 h). We did not observe similar trends among PM2.5 exposures. The correlations between UFP and PM2.5 exposures varied throughout the day, with an overall correlation ranging from moderate to high among participants. Identifying microenvironments and activities where high exposure to PM occurs may offer potential targets for interventions to reduce overall exposures among sensitive groups.