RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Validation of non-negative matrix factorization for rapid assessment of large sets of atomic pair distribution function data
Liu, C.-H., Wright, C. J., Gu, R., Bandi, S., Wustrow, A., Todd, P. K., O'Nolan, D., Beauvais, M. L., Neilson, J. R., Chupas, P. J., Chapman, K. W., & Billinge, S. J. L. (2021). Validation of non-negative matrix factorization for rapid assessment of large sets of atomic pair distribution function data. Journal of Applied Crystallography, 54, 768-775. https://doi.org/10.1107/S160057672100265X
The use of the non-negative matrix factorization (NMF) technique is validated for automatically extracting physically relevant components from atomic pair distribution function (PDF) data from time-series data such as in situ experiments. The use of two matrix-factorization techniques, principal component analysis and NMF, on PDF data is compared in the context of a chemical synthesis reaction taking place in a synchrotron beam, applying the approach to synthetic data where the correct composition is known and on measured PDFs from previously published experimental data. The NMF approach yields mathematical components that are very close to the PDFs of the chemical components of the system and a time evolution of the weights that closely follows the ground truth. Finally, it is discussed how this would appear in a streaming context if the analysis were being carried out at the beamline as the experiment progressed.