RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Utilizing Big Data and Twitter to Discover Emergent Online Communities of Cannabis Users
Baumgartner, P., & Peiper, N. (2017). Utilizing Big Data and Twitter to Discover Emergent Online Communities of Cannabis Users. Substance Abuse: Research and Treatment, 11, 1-9. Article 1178221817711425. https://doi.org/10.1177/1178221817711425
Large shifts in medical, recreational, and illicit cannabis consumption in the United States have implications for personalizing treatment and prevention programs to a wide variety of populations. As such, considerable research has investigated clinical presentations of cannabis users in clinical and population-based samples. Studies leveraging big data, social media, and social network analysis have emerged as a promising mechanism to generate timely insights that can inform treatment and prevention research. This study extends a novel method called stochastic block modeling to derive communities of cannabis consumers as part of a complex social network on Twitter. A set of examples illustrate how this method can ascertain candidate samples of medical, recreational, and illicit cannabis users. Implications for research planning, intervention design, and public health surveillance are discussed.