RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Using A Quasi-Potential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells
Weber, AZ., & Newman, J. (2009). Using A Quasi-Potential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells. SIAM Journal on Applied Mathematics, 70(2), 488-509.
In this paper, a quasi-potential approach along with conformal mapping is used to model the diffusion media of a polymer-electrolyte fuel cell. This method provides a series solution that is grid independent and only requires integration along a single boundary to solve the problem. The approach accounts for nonisothermal phenomena, two-phase flow, correct placement of the electronic potential boundary condition, and multilayer media. The method is applied to a cathode diffusion medium to explore the interplay between water and thermal management and performance, the impact of the rib-to-channel ratio, and the existence of diffusion under the rib and flooding phenomena