RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016)
Polli, G., Olson, K., Chism, J. P., St. John-Williams, L., Yeager, R. L., Woodard, S. M., Otto, V., Castellino , S., & Demby, V. E. (2009). An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metabolism and Disposition, 37(2), 439-442. https://doi.org/10.1124/dmd.108.024646
Lapatinib is a tyrosine kinase inhibitor approved for use in combination with capecitabine to treat advanced or metastatic breast cancers overexpressing human epidermal receptor 2 (ErbB2). This work investigated the role of P-glycoprotein (Pgp; the protein from the Mdr1a/b gene) and breast cancer resistance protein (Bcrp; the protein from the Bcrp1 gene) in modulating the central nervous system penetration of lapatinib at steady-state conditions in FVBn mice (wild-type), Mdr1a/b(–/–), Bcrp1(–/–), and Mdr1a/b(–/–)/Bcrp1(–/–) knockout mice. After an intravenous infusion of lapatinib for 24 h to a targeted steady-state plasma concentration of 700 ng/ml (0.3 mg/kg/h) or 7000 ng/ml (3 mg/kg/h), lapatinib brain-to-plasma ratios were approximately 3- to 4-fold higher in Mdr1a/b(–/–) knockout mice (ratio range from 0.09 to 0.16) compared with wild-type mice (ratio range from 0.03 to 0.04). There was no difference in the brain-to-plasma ratio in the Bcrp1(–/–) knockout mice (ratio range from 0.03 to 0.04) compared with wild-type mice. In contrast, Mdr1a/b(–/–)/Bcrp1(–/–) triple knockout mice had a 40-fold higher brain-to-plasma ratio (ratio range from 1.2 to 1.7), suggesting that Pgp and Bcrp work in concert to limit the brain-to-plasma ratio of lapatinib in mice. This finding has important potential consequences for the treatment of brain tumors in breast cancer patients treated with tyrosine kinase inhibitors as well as the basic understanding of ATP binding cassette transporters expressed in the blood-brain barrier on the central nervous system disposition of drugs.