RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Differences in nicotine self-administration between outbred and recombinase-driver transgenic rat lines
Leyrer-Jackson, J. M., Overby, P. F., Bull, A., Marusich, J. A., & Gipson, C. D. (2021). Strain and sex matters: Differences in nicotine self-administration between outbred and recombinase-driver transgenic rat lines. Experimental and Clinical Psychopharmacology, 29(4), 375-384. https://doi.org/10.1037/pha0000376
Preclinical studies of nicotine self-administration provide important value for the field as they are highly rigorous, controlled, can be conducted quickly, and are generalizable to humans. Given the translational value of the nicotine self-administration model, and the relatively new guidelines of the National Institutes of Health to include sex as a biological variable, strain and sex differences in nicotine acquisition were examined here in two outbred rat strains. Sprague-Dawley (SD) and Long-Evans (LE; wildtype and cholinergic acetyltransferase cre-recombinase transgenic) rats of each sex were implanted with indwelling intravenous jugular catheters. Rats were trained to self-administer nicotine (0.02 mg/kg per infusion, paired with contingent light + tone stimuli). Acquisition criteria were set at a minimum active:inactive response ratio of 2:1 and a minimum of 10 infusions per session, both of which had to be met for a minimum of 10 sessions. Across 10 sessions, male SD rats self-administered significantly more nicotine than female SD rats (p < .05). indicating a sex difference in this strain. LE females self-administered more nicotine than SD females indicative of a strain difference between females (p < .05). SD males increased nicotine infusions across sessions compared to LE males and SD females (p < .05). No strain or sex differences were observed in the number of sessions to reach criteria. No differences between wildtype and transgenic LE rats were observed. These results demonstrate sex and strain differences in nicotine self-administration between SD and LE rats and may lend insight into development of other nicotine self-administration models, where sex and strain may impact acquisition.